ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

ФЕДЕРАЛЬНОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ «ГОСУДАРСТВЕННЫЙ РЕГИОНАЛЬНЫЙ ЦЕНТР СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И ИСПЫТАНИЙ В Г. МОСКВЕ» (ФБУ «РОСТЕСТ – МОСКВА»)

УТВЕРЖДАЮ

Заместитель генерального директора

ФБУ "Ростест-Москва"

Е. В. Морин

"22" <u>апреля 2016 г.</u>

Государственная система обеспечения единства измерений

Анализаторы спектра FPH

Методика поверки РТ-МП-3094-441-2016

n.p.64297-16

Настоящий документ устанавливает методы и средства поверки анализаторов спектра FPH (далее анализаторов), изготовленных фирмой "Rohde & Schwarz GmbH & Co. KG", Германия.

Интервал между поверками – 1 год.

1 Операции поверки

- 1.1 При первичной и периодической поверке анализатора выполняются операции, указанные в таблице 1.
- 1.2 При получении отрицательных результатов при выполнении любой из операций поверка прекращается и прибор бракуется.

Таблица 1 - Перечень операций поверки.

тиолици т ттере тепь операции поверки.	Номер	Проведение операции при	
	пункта	первичной	периоди-
Наименование операции	документа	поверке	ческой
	по поверке	•	поверке
Внешний осмотр	7.1	+	+
Опробование и подтверждение	7.2	+	+
идентификационных данных ПО			
Определение относительной погрешности	7.3	+	+
частоты опорного генератора			
Определение абсолютной погрешности	7.4	+	+
измерения уровня			
Определение среднего уровня собственных	7.5	+	+
шумов анализатора			
Определение уровня фазовых шумов	7.6	+	+
Определение уровня гармонических искажений	7.7	+	<u>-</u>
второго порядка			
Определение уровня интермодуляционных	7.8	+	-
искажений третьего порядка			

2 Средства поверки

- 2.1 При проведении поверки должны применяться средства поверки, указанные в таблице 2.
- 2.2 Допускается применять другие средства измерений, обеспечивающие измерение значений соответствующих величин с требуемой точностью.

Таблица 2 - Перечень средств поверки.

Наименование и тип	Основные технические характеристики	
основных и вспомогательных средств поверки	Пределы измерения	Пределы допускаемой погрешности
Ваттметр проходящей мощности СВЧ NRP-Z98	от 9 кГц до 6 ГГц; от 2·10 ⁻⁷ до 1·10 ² мВт	±2,5 %
Сенератор сигналов SMB100A с опциями B106	от 9 кГц до 6 ГГц; (от минус 120 до 18) дБмВт	±1·10 ⁻⁷
и В1	фазовый шум минус 122 дБн/Гц на 1 ГГц, отстройка 10 кГц	±1 дБ

3 Требования безопасности

При проведении поверки должны быть соблюдены требования безопасности, предусмотренные «Правилами технической эксплуатации электроустановок потребителей», «Правилами техники безопасности при эксплуатации электроустановок потребителей», а также изложенные в руководстве по эксплуатации на приборы, в технической документации на применяемые при поверке рабочие эталоны и вспомогательное оборудование.

4 Условия поверки

При проведении поверки должны соблюдаться следующие требования ГОСТ 8.395-80:

- температура окружающей среды (23±5)°С;
- относительная влажность воздуха (65±15) %;
- атмосферное давление (100±4) кПа

5 Требования к квалификации поверителей

К проведению поверки анализатора допускаются лица, имеющие высшее или среднее специальное образование, квалификационную группу по электробезопасности не ниже 4 с напряжением до 1000 **B**, прошедшие инструктаж по технике безопасности при работе с электронным измерительно-испытательным оборудованием, и опыт практической работы.

6 Подготовка к поверке

- 6.1 Поверитель должен изучить руководства по эксплуатации поверяемого прибора и используемых при поверке средств измерений
- 6.2 Перед включением приборов должно быть проверено выполнение требований безопасности.
- 6.3 Определение метрологических характеристик поверяемого прибора должно производиться по истечении времени установления рабочего режима, равного 15 мин.

7 Проведение поверки

7.1 Внешний осмотр

При проведении внешнего осмотра необходимо проверить:

- наличие маркировки, подтверждающей тип и заводской номер;
- наружная поверхность не должна иметь следов механических повреждений, которые могут влиять на работу прибора и его органов управления;
 - разъемы должны быть чистыми;
 - соединительные провода должны быть исправными;
- комплектность анализатора должна соответствовать указанной в технической документации фирмы-изготовителя.

Приборы, имеющие дефекты, бракуются и направляются в ремонт.

7.2 Опробование и определение идентификационных данных

Проверить отсутствие ошибок при включении анализатора. Идентификационное наименование и номер версии программного обеспечения анализатора отображаются при нажатии Setup-HW/SW Info.

Номер версии ПО должен соответствовать описанию ПО в технической документации на анализатор, ошибки при включении должны отсутствовать.

7.3 Определение относительной погрешности частоты опорного генератора

Погрешность частоты опорного генератора определить при помощи генератора SMB100A.

На генераторе установить частоту 1 ГГц, уровень 1 мВт.

На анализаторе выполнить следующие установки:

- [PRESET] - [FREQ : 1 GHz] - [SPAN : 100 kHz]
- [BW : MANUAL RBW : 300 kHz]
- [AMPT: 0 dBm]
- [MARKER : Marker Function: Frequency Count]

Относительную погрешность частоты вычислить по формуле:

$$\delta f = (1 \Gamma \Gamma \mu - F изм) / F изм$$

Результаты поверки по данному пункту считать положительными, если погрешность частоты опорного генератора не превышает $\pm 2.10^{-6}$.

7.4 Определение абсолютной погрешности измерения уровня

Определение абсолютной погрешности измерения уровня провести с помощью генератора SMB100A и ваттметра NRP-Z98.

Выполнить соединение приборов по схеме рис. 1. Перевести анализатор в режим работы от внешней опорной частоты.

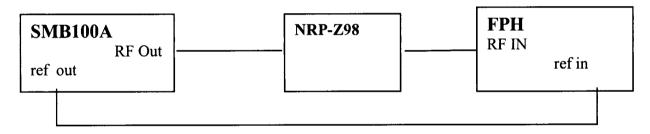


Рисунок 1

На генераторе установить частоту 100 МГц, уровень 6 дБмВт.

Выполнить следующие установки на анализаторе:

- [PRESET]
- [FREQ : 100 MHz]
- [AMPT: 0 dBm]
- -[ATT: 10 dB]
- [SPAN : 10 kHz]
- [BW : MANUAL RBW : 1 kHz] - [TRACE : DETECTOR : RMS]
- [SWEEP : Manual SWP Time : 5s]
- [MKR-> : Set to Peak]

Зафиксировать результат измерения уровня по показанию маркера анализатора спектра L и значение уровня мощности, измеренное ваттметром $L_{\text{powermeter}}$. Вычислить погрешность измерения по формуле:

$$\Delta_{100\text{M}\Gamma\text{u}} = L - L_{\text{powermeter}}$$

Повторить измерения для частот 9 к Γ ц, 1 М Γ ц, 10 М Γ ц, 50 М Γ ц, 500 М Γ ц, 700 М Γ ц, 1 Γ Γ ц, 1,3 Γ Γ ц, 1,5 Γ Γ ц, 1,99 Γ Γ ц, при наличии опций В3 и В4 также провести измерения для частот 2,5 Γ Γ ц, 3 Γ Γ ц, 3,5 Γ Γ ц, 4 Γ Γ ц.

Анализаторы спектра FPH

лист 4

Повторить измерения для всех частот при установке уровня сигнала на генераторе: минус 4 дБмВт, минус 14 дБмВт, минус 24 дБмВт, минус 34 дБмВт.

Повторить измерения для частоты 2 ГГц и уровня сигнала на генераторе минус 14 дБмВт при положениях ВЧ аттенюатора анализатора спектра: 0 дБ, 20 дБ, 30 дБ и 40 дБ.

Результаты поверки по данной операции считать удовлетворительными, если значение погрешности измерения уровня не превышает \pm 2,3 дБ до 10 МГц и \pm 1,3 дБ свыше 10 МГц.

7.5 Определение среднего уровня собственных шумов

Определение среднего уровня собственных шумов анализатора осуществить измерением их уровня на дисплее в отсутствии входной мощности. Для этого к входу анализатора подключить согласованную нагрузку 50 Ом и выполнить установки на анализаторе:

- -[PRESET]
- [SPAN : Zero Span]
- [**BW**: Manual **RB**W : **1 kHz**]
- [BW: Manual VBW: 10 Hz]
- [SWEEP : Manual SWP Time : 600ms] - [TRACE : Trace Mode: Average 12] - [TRACE : DETECTOR : SAMPLE]
- -[ATT: 0 dB]
- [AMPT : -40 dBm]
- [FREQ : {fизм}]
- [MKR->: SET TO PEAK]

Частоту $\{f_{\text{изм}}\}$ установить из ряда 1 МГц, 11 МГц, 500 МГц, 1 ГГц, 1,5 ГГц, 2 ГГц, при наличии опций В3 и В4 — также установить частоты 2,5 ГГц, 3 ГГц, 3,5 ГГц, 4 ГГц.

Считать показания маркера для всех частот, нормализовать значение шума к полосе 1 Гц, для чего из показаний маркера вычесть 30 дБ.

Затем повторить измерения, включив предусилитель, для чего на анализаторе установить:

- [AMPT: Att/ Amp/Imp: PREAMP ON]

Результаты поверки по данной операции считать удовлетворительными, если действительные значения уровня шума не превышают допустимых значений, приведенных в таблице 3.

Таблица 3

Наименование характеристики		Значение
		характеристики
Значения среднего уровня собственных	Предусилитель выключен	
шумов в полосе 1 Гц, при ослаблении	от 1 МГц до 10 МГц	минус 135
встроенного аттенюатора 0 дБ, в зависимости	от 10 МГц до 1 ГГц	минус 142
от состояния предусилителя, в диапазоне	от 1 ГГц до 4 ГГц	минус 140
частот, дБ относительно 1 мВт, не более:	Предусилитель включен	<u></u>
	от 1 МГц до 10 МГц	минус 150
	от 10 МГц до 1 ГГц	минус 158
	от 1 ГГц до 4 ГГц	минус 156

7.6 Определение уровня фазовых шумов

Для определения уровня фазовых шумов выполнить соединение приборов по схеме, представленной на рис. 1.

На генераторе установить частоту 500 МГц, уровень 0 дБмВт.

На анализаторе установить:

- [PRESET]

- [FREQ : 500 MHz]

- [AMPT : 0 dBm]

- [AMPT: Att/Amp/Imp: Manual Att: 10dB]

- [SPAN : 100 kHz]

- [BW: Manual RBW : 1 kHz] - [BW: Manual VBW: 10 kHz]

- [TRACE : DETECTOR : RMS] - [TRACE : Trace Mode: Average 10]

- [MKR->: SET TO PEAK]

Считать значение фазового шума по показаниям дельта-маркера D2, привести его к полосе 1 Гц. уменьшив на 30 дБ, при отстройке маркера от несущей и соответствующей полосе обзора из ряда: 30 кГц/100 кГц, 100 кГц/300 кГц и 1 МГц/3 МГц.

Результаты поверки по данной операции считать удовлетворительными, если действительные значения уровня фазовых шумов в полосе 1 Гц относительно уровня несущей не превышают:

минус 88 дБ для отстройки 30 кГц, минус 98 дБ для отстройки 100 кГц. минус 118 дБ для отстройки 1 МГц.

7.7 Определение уровня гармонических искажений второго порядка

Для определения уровня гармонических искажений второго порядка соединить выход генератора с входом анализатора спектра через фильтр нижних частот. Схема измерения представлена на рис. 2.

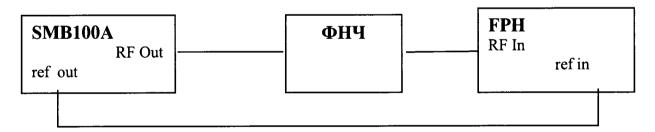


Рисунок 2

Установить на генераторе частоту из таблицы 4 и уровень сигнала минус 20 дБмВт

Подключить фильтр соответствующего диапазона На анализаторе установить:

- [PRESET]

- [FREQ : из таблицы 4]

- [AMPT : -20 dBm]

- [AMPT: Att/Amp/Imp: Manual Att: 0dB]

- [SPAN : 50 kHz]

- [BW: Manual RBW : 1 kHz] - [BW: Manual VBW: 100 Hz]

- [MKR->: SET TO PEAK]

Анализаторы спектра FPH

пист 6 Включить на анализаторе режим дельта-маркера, и установить на анализаторе частоту второй/третьей гармоники в соответствии с таблицей 4.

Записать показания дельта-маркера в таблицу 4.

Таблица 4.

Параметры генератора		Параметры гармоники		ЭНИКИ
Тип фильтра	Частота,	Частота,	Измеренное	Допустимое
	МГц	МГц	значение, дБ	значение, дБ
			относительно уровня	относительно уровня
			несущей	несущей, не более
(32-53) МГц	45	90/135		
(86 – 152) МГц	105	210/315		минус 40
(390-600) МГц	495	990/1485		

Результаты поверки по данной операции считать удовлетворительными, если полученные значения уровня гармонических искажений второго порядка не превышают предельных допускаемых значений, указанных в последнем столбце таблицы 4.

7.8 Определение уровня интермодуляционных искажений третьего порядка

Определение уровня интермодуляционных искажений третьего порядка провести по схеме рис. 3 путем измерения относительного уровня помех на частотах: $(2 \times f_1 - f_2)$ и $(2 \times f_2 - f_1)$ при подаче на анализатор двух сигналов примерно одинаковой мощности с частотами f_1 и f_2 .

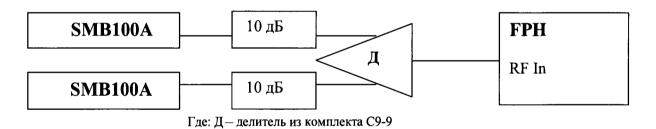


Рисунок 3

На анализаторе установить:

- [PRESET]
- [FREQ : из таблицы 5]
- [AMPT : -20 dBm]
- [AMPT: Att/Amp/Imp: Manual Att: 0dB]
- [SPAN : 500 kHz]
- [BW: Manual RBW: 3 kHz]
- [MKR->: SET TO PEAK]

Установить на генераторах уровень сигнала минус 10 дБ относительно 1 мВт и частоты $f_1 = f_{\text{изм}}$ - 50 кГц — на одном и $f_2 = f_{\text{изм}}$ + 50 кГц — на другом.

Выключить мощность одного из генераторов. Органами регулировки второго генератора установить уровень на входе анализатора минус 20 дБ относительно 1 мВт.

Выключить этот генератор, включить другой и его уровень установить аналогичным образом.

Включить мощность обоих генераторов.

Включить на анализаторе режим дельта-маркера, установить дельта-маркер на 100 кГц левее меньшей частоты и на 100 кГц правее большей частоты. Занести

Анализаторы спектра FPH

лист 7

большее по модулю значение маркера в таблицу 5. Это значение соответствует уровню интермодуляционных искажений 3-го порядка.

Повторить измерения на частотах, указанных в таблице 5 в диапазоне частот поверяемого анализатора спектра.

Таблица 5

Центральная частота	Интермодуляционные искажения 3-го порядка		
анализатора f _{изм} , МГц	Измеренные значения, дБ относительно уровня несущей	Допустимые значения, дБ относительно уровня несущей	
300			
1000			
1900		минус 50	
2900 (опция В3)			
3900 (опция В4)			

Результаты поверки по данной операции считать удовлетворительными, если действительные значения интермодуляционных искажений не превышают допустимые значения, приведенные в последнем столбце таблицы 5.

8 Оформление результатов поверки

- 8.1 Результаты измерений, полученные в процессе поверки, заносят в протокол произвольной формы.
- 8.2 При положительных результатах поверки выдается свидетельство о поверке в соответствии с приказом Министерства промышленности и торговли Российской Федерации №1815 от 02.07.2015.

Поверительное клеймо наносится на переднюю панель анализаторов спектра FPH в соответствии с приказом Министерства промышленности и торговли Российской Федерации № 1815 от 02.07.2015.

8.3 При отрицательных результатах поверки, выявленных при внешнем осмотре, опробовании, или выполнении операций поверки, выдается извещение о непригодности в соответствии с приказом Министерства промышленности и торговли Российской Федерации № 1815 от 02.07.2015.

Начальник лаборатории № 441 ФБУ «Ростест-Москва»

С. Э. Баринов

Нач. сектора № 1 лаборатории № 441 ФБУ «Ростест-Москва» Р. А. Осин